VitroGel® 3D-RGD

xeno-free hydrogel – RGD modified
PROMO: Free Dilution Solution. Limit 1 per order.

  • 2 mL
  • 10 mL
Clear
SKU: N/A Category:

Recommended Products

Featured
$89.90

For recovering cells from hydrogel system in 15 min. Enzyme-free.

PROMO
$32.00

For hydrogel concentration adjustment. Contains sucrose for best osmolarity. PROMO:  Free with any VitroGel system. Limit 1 per order. Add to cart for price adjustment.

PROMO
$32.00

For hydrogel concentration adjustment. Sucrose-free. PROMO:  Free with any VitroGel system. Limit 1 per order. Add to cart for price adjustment.

Overview

VitroGel® 3D-RGD is a ready-to-use tunable hydrogel system modified with RGD cell adhesive peptide, promoting the cell attachment and cell-matrix interactions during the 3D cell culture. This RGD modified hydrogel system is good for adhesion cells or cells need good cell-matrix interactions.

VitroGel 3D-RGD is one system of the family of ready-to-use, xeno-free tunable hydrogel system which closely mimics the natural extracellular matrix (ECM) environment.

VitroGel creates a functional and optimized environment to make cells feel like at home. The hydrogel system is room temperature stable, has a neutral pH, transparent, permeable and compatible with different imaging systems. The solution transforms into a tunable hydrogel matrix by simply mixing with cell culture medium. Cells cultured in this system can be easily harvested out with our VitroGel Cell Recovery Solution. The hydrogel can also be tuned to be injectable for in vivo studies.

From 3D cell culture, 2D cell coating to animal injection, VitroGel makes it possible to bridge the in vitro and in vivo studies with the same platform system.

Specifications

  • Xeno-free tunable hydrogel modified with RGD peptide
  • Good for adhesion cells or cells requiring good cell-matrix interactions
  • Ready-to-use at room temperature
  • Tunable hydrogel:  Dilute with VitroGel Dilution Solution (TYPE 1 or TYPE 2) for different concentrations
  • Neutral pH
  • Transparent
  • Compatible with VitroGel Cell Recovery Solution for easy cell harvesting
  • Injectable hydrogel (Check user handbook for preparation details)
  • Ships room temperature. Store at 2-8°C
  • Size: 2 mL and 10 mL
  • Number of uses (10 mL): 2-6 of 24-well plate at 250 to 300 µL/well

Handbook and Resources

Product Documentation

Frequently Asked Questions

View FAQ (Expand)

To see a full list of FAQ, click here.  FAQ LIST

  • How to prepare the cell suspension to mix the hydrogel? Shall I add serum?
    If cells cultured in complete cell culture medium, which is supplement with 10% FBS or other critical supplement, please prepare the cell suspension using the following methods before mixing it with hydrogel solution.

    1. Prepare the cell suspension with 2X concentration (e.g. 100K), and mix with 100% FBS at 1:1 (v/v) ratio to get 1X cell suspension (50K) with 50% FBS.
    2. Mix the diluted hydrogel solution with the cell suspension from above at 4:1 (v/v) ratio to get the final cells in the hydrogel at 10K with 10% FBS supplement.

    If serum plan is an important role in your traditional cell culture, it is also important for 2D coating and 3D culture. Adding serum supplement in the hydrogel and adjusting the final serum concentration to the target level would support cell growth in hydrogel system.

  • How do I adjust the hydrogel formation time?

    –  If VitroGel needs to be diluted more than 1:3 ratio, a longer waiting time (20-30 min) may be needed for soft gel formation. Using a higher volume of cell culture medium for mixing would help to accelerate the process of hydrogel formation.-  If the hydrogel solidifies too fast after mixing with culture medium (showing as small solid gel chunk), adjust the mixing ratio by using less cell culture medium. For example, if mixing 4 mL diluted hydrogel solution with 1 mL cell culture medium lead to the solid gel chuck (particles), then mixing 4 mL diluted hydrogel solution with 0.5-0.8 mL cell culture medium would help to solve the issue.

    –  On the other hand, if the hydrogel formation is too slow, which may happen when using low hydrogel concentration at 1:3 or 1:4 dilution or using cell culture medium with very low ionic concentration, adjust the mixing ratio by using more cell culture medium. For example, if mixing 4 mL diluted hydrogel solution with 1 mL cell culture medium lead to a slow hydrogel formation, then mixing 4 mL diluted hydrogel solution with 1.5-4 mL cell culture medium would help to solve the issue.

  •  How do I adjust the stiffness of the final hydrogel?
    The stiffness of the final hydrogel can be adjusted by diluting the hydrogel solution before mixing with cell culture media. Our VitroGel Dilution Solution can help to adjust the hydrogel concentration. Please read the “First-time User Note” to learn how to prepare different VitroGel dilutions. If you need a higher hydrogel stiffness than the original product, please contact us at support@thewellbio.com.

  • Can I harvest cells from the hydrogel after 3D culture?
    Yes, the cells can be harvested after 2D coating or 3D culture by using the VitroGel Cell Recovery Solution. VitroGel™ Cell Recovery Solution is a ready-to-use, enzyme-free solution to harvest 2D or 3D cultured cells from hydrogel fast and safely. The solution is compatible with VitroGel hydrogel system and can recover cells from VitroGel in 15 minutes. VitroGel Cell Recovery Solution is room temperature stable, has a neutral pH and work at 37 °C operating temperature. The solution can maintain high cell viability during the recovery process. Cells can be sub-culture in both 2D and 3D culture after recovery.

SEE MORE FAQ (Frequently Asked Questions)

Video Resources

Application Notes

Data and References

Figure 1. 3D culture of PANC-1 cells at three different dilutions of VitroGel 3D-RGD.

A. PANC-1 cells were cultured in increasing dilutions of hydrogel solution at concentrations of 1:0, 1:1, and 1:3. The morphological differences were seen based on the concentration of the hydrogel. The 1:1 and 1:3 dilution ratios of hydrogel allowed for more rapid division and expansion of the single cells, developing larger 3D colonies compared to 1:0 dilution. The ActinGreen / NucBlue staining in the enlarged images (bottom) reveals increasing complexity and dispersion of the ECM generated by the cell-cell contact of PANC-1 cells when maintained in VitroGel 3D-RGD hydrogel. Images were taken at Day 7 with 10X (top and middle) and 30X enlarged (bottom); corresponding antibody staining: NucBlue (nucleus) and ActinGreen (actin).

Figure 2. CD8+ T cells 3D culture in VitroGel 3D system

A. On 2D surface of VitroGel 3D-RGD, cells spread out, adopting a morphology reminiscent of the 2D culture on standard treated culture plastic. When cultured in 3D hydrogel, the strength of the hydrogel (different dilution) can affect its mechanical properties, and thus cell viability and response within the hydrogel. The results show that the 1:1 hydrogel dilution allowed for big colonies which can mimic in vivo situation for drug screening (see HCT 116 application note for details). A thick hydrogel coating plate has been prepared by mixing VitroGel 3D with PBS at 1:1 ratio. A 300 µL mixture has been added to a well of a 24-well plate and stabilization at room temperature for 20 min before adding cells on top of the hydrogel. Cell spheroids form on the top of hydrogel. Cells seeded at 2.5-10×105 cells/mL.

Figure 3. 3D culture of Beta TC3 and Ins-1 cells in VitroGel 3D-RGD hydrogel

Both Beta TC3 and Ins-1 cells can form a big spheroid structure in VitroGel 3D-RGD after 14 day. The cells were seeded at 5×105 cells/mL

Tables of successful cell types

Cell typesApplicationsCulture mediumDilution
4T1 cells3D cultureRPMI 1640 with 10% FBS1:2
A549 cells3D cultureDMEM with 10% FBS1:1 to 1:3
Au565 cells3D cultureRPMI 1640 with 10% FBS1:3
Beta TC3 cells3D cultureDMEM with 10% FBS1:3
BT 474 cells3D cultureDMEM with 10% FBS1:3
DLD1 cells3D cultureDMEM with 10% FBS1:1 to 1:3
Fuji cells3D cultureRPMI 1640 with 10% FBS1:1 to 1:3
H460 cells3D cultureRPMI 1640 with 10% FBS1:1 to 1:3
HCT 116 cells2D and 3D cultureMcCoys’ 5 with 10% FBS1:1
HCT-8 cells3D cultureRPMI 1640 with 10% FBS1:3
HEK 293 cells3D cultureDMEM with 10% FBS1:3
Hela cells2D and 3D cultureDMEM with 10% FBS1:3
HepG2 cells3D cultureDMEM with 10% FBS1:1 to 1:3
Human iPSCs2D and 3D culturemTeSR11:3
Ins-1 Cells3D cultureRPMI 1640 with 10% FBS1:3
MCF-12A cells3D cultureDMEM/F-12 with 10% FBS1:3
MDA-MB-231 cells3D cultureL-15 medium with 10% FBS1:1 to 1:3
Melanoma cells3D cultureRPMI 1640 with 10% FBS1:1 to 1:3
OVCAR-3 cells3D cultureRPMI 1640 with 10% FBS1:1 to 1:3
Panc-1 cells3D cultureDMEM with 10% FBS1:1 to 1:3
SKB3 cells2D and 3D cultureDMEM with 10% FBS1:1 to 1:3
SYO-1 cells3D cultureRPMI 1640 with 10% FBS1:1 to 1:3
T47D cells3D cultureRPMI 1640 with 10% FBS1:3
UD 145 cells3D cultureEMEM with 10% FBS1:1 to 1:3

References/Publications

Size

2 mL, 10 mL